

RAMANUJAN MATHS CLASSES

P-149, Sekhon Vihar, Delhi Cantt. Delhi 110010

ASSIGNMENT CLASS XII CHAPTER 3 & 4 SESSION 2024-25

Class 12 - Mathematics Time Allowed: 3 hours Maximum Marks: 163 [1] If A and B are two matrices such that AB = A and BA = B, then B^2 is equal to 1. a) 0 b) A c) B d) 1 2. If A is a null matrix then [1] a) A is a cube matrix b) A is not a square matrix c) both A is a square matrix and A is not a d) A is a square matrix square matrix 3. For every square matrix A, there exists an identity matrix of same order such that [1] a) IA = A only b) IA = AI = Ac) AI = A only d) AI = A = AIIf $\begin{bmatrix} x & 2 \\ 3 & x-1 \end{bmatrix}$ is a singular matrix, then the product of all possible values of x is: [1] 4. a) 6 b) -6 c) -7 d) 0 5. If the matrix A is both symmetric and skew symmetric, then [1] a) A is a null matrix b) A is a zero matrix c) A is a square matrix d) A is a diagonal matrix 6. If A is a square matrix, then AA is a [1] a) none of these b) skew-symmetric matrix c) symmetric matrix d) diagonal matrix 3 3 $\begin{bmatrix} 4 & 6 & 8 \\ 5 & 7 & 9 \end{bmatrix}$, then which of the following is If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ [1] and D =7. defined? a) A + B b) C + D c) B + Cd) B + D 8. Which one of the following is a scalar matrix? [1] a) $\begin{bmatrix} -8 & 0 \\ 0 & -8 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 0 \\ 6 & 0 \end{bmatrix}$ 6

9. A matrix A = $[a_{ij}]_{n \times n}$ is said to be symmetric if:

1111a)
$$a_{ij} = -a_{ij}$$
b) $a_{ij} = 0$ c) $a_{ij} = 1$ d) $a_{ij} = a_{ij}$ 10. If $|A| = 2$, where A is a 2 × 2 matrix, then $|AA^{-1}|$ equals:[1]a) 4b) 8c) $\frac{1}{22}$ d) 211. If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.[2]12. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ and $f(x) = x^2 - 4x + 1$, find $f(A)$ [2]13. Construct a matrix $A = [a_{ij}]_{2\times 2}$ whose elements a_{ij} are given by $a_{ij} = e^{2ix} \sin jx$ [2]14. If A is a symmetric matrix and $n \in N$, write whether A^n is symmetric or skew-symmetric or neither of these two.[2]15. Find the value of $(x \cdot y)$ from the matrix equation $2\begin{bmatrix} x & 5 \\ 7 & y - 3\end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2\end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14\end{bmatrix}$ [2]15. Show that all the diagonal elements of a skew-symmetric matrix are zero.[2]17. Express the matrix $A = \begin{bmatrix} 2 & 3 \\ -1 & 3 \\ 3\end{bmatrix}$ as the sum of a symmetric matrix and a skew-symmetric matrix[2]18. If A and B are symmetric matrices of the same order, then show that AB is symmetric finald only if A and B[2]19. Let A, B be two matrices such that they commute. Show that for any positive integer, n, the equation $(AB)^n = A^n$ [3]19. Let A, B be two matrices A and B, verify that $[AB]^i = B'A; A = \begin{bmatrix} 1 \\ 4 \\ 3\end{bmatrix}, B = [-1 & 2 & 1]$.[3]20. If $A = \begin{bmatrix} 3 & -5 \\ -4 & 2\end{bmatrix}$, then find $A^2 - 5A - 14I$. Hence, obtain A^3 .[3]21. For the following matrices A and B, verify that $[AB]^i = B'A; A = \begin{bmatrix} 1 \\ 4 \\ 3\end{bmatrix}, B = [-1 & 2 & 1]$.[3]22. Two farmers Ramkishan and Gurcharan Singh cultivates only three varieties of rice namely Basmati, Permal and Pa

Basmati Permal Naura B = $\begin{bmatrix} 5000 & 10,000 & 6000 \\ 20,000 & 10,000 & 10,000 \end{bmatrix}$ Ramkishan Gurcharan Singh

i. Find the combined sales in September and October for each farmer in each variety.

- ii. Find the decrease in sales from September to October.
- iii. If both farmers receive 2% profit on gross sales, compute the profit for each farmer and for each variety sold in October.

23. Let
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$$
 and $f(x) = x^2 - 4x + 7$. Show that $f(A) = O$. Use this result to find A^5 [3]

[1]

24. Find matrix A such that $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A =$

$$= \begin{bmatrix} -1 & -8\\ 1 & -2\\ 9 & 22 \end{bmatrix} .$$
^[3]

- 25. A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% [3] interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interest. Using matrix method, find the amount invested by the trust.
- A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both [3] matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal?
- 27. If $A = \begin{bmatrix} 3 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 3 \end{bmatrix}$ then find a non-zero matrix C such that AC = BC. [5]

28.
$$A = \begin{bmatrix} 0 & -\tan \frac{\pi}{2} & 0 \\ \tan \frac{\pi}{2} & 0 \end{bmatrix}$$
(5)
Prove $I + A - (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$
(7)
29. Let $A = \begin{bmatrix} 3 & 2 & 7 \\ 1 & 4 & 3 \\ -2 & 5 & 8 \end{bmatrix}$. Find matrices X and Y such that X + Y = A, where X is a symmetric and X is a skew-symmetric matrix.
30. If $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is written as B + C, where B is a symmetric matrix and G is a skew-symmetric matrix, then find
B.
31. If $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5 \\ 7 & 12 \end{bmatrix}$, find matrix C such that 5A + 3B + 2C is a null matrix.
32. Assertion (A): If $\begin{bmatrix} x & 2 \\ 2 & 0 \\ -4 & 0 \end{bmatrix} = 0$, then x = 4.
a) Both A and R are true and R is the correct explanation of A.
c) A is true but R is false.
33. Assertion (A): If $A = \begin{bmatrix} 3 & -2 \\ -2 \\ 6 \\ -4 \\ -2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the value of k such that $A^2 = kA - 2I$, is -1.
Reason (R): If $A = \begin{bmatrix} 2 & -2 \\ -2 \\ 6 \\ -4 \\ -2 \end{bmatrix}$ and $I = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, then the value of k such that $A^2 = kA - 2I$, is -1.
Reason (R): If $A = \begin{bmatrix} 2 & -2 \\ 6 \\ -4 \\ -2 \end{bmatrix}$ and $I = \begin{bmatrix} 2 \\ 0 \\ 10 \end{bmatrix}$, then (AB) $A = 16 \begin{bmatrix} -8 & 16 \end{bmatrix}$.
Reason (R): If $A = \begin{bmatrix} 2 & -2 \\ 0 \\ -4 \\ -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 10 \end{bmatrix}$, the (AB)^T = $[-8 & 16]$.
Reason (R): If $A = \begin{bmatrix} 2 & -2 \\ 0 \\ -2 \\ -2 \\ -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 0 \\ 10 \end{bmatrix}$, the (AB)^T = $[-8 & 16]$.
Reason (R): If $A = \begin{bmatrix} 2 & -2 \\ 0 \\ -2 \\ -2 \\ 0 \\ -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 0 \\ 10 \end{bmatrix}$, the (AB)^T = $[-8 & 16]$.
Reason (R): If $A = \begin{bmatrix} 2 & -2 \\ 0 \\ -2 \\ -2 \\ 0 \\ -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 0 \\ 10 \end{bmatrix}$, the (AB)^T = $[-8 & 16]$.
Reason (R): If $A = \begin{bmatrix} 2 & -2 \\ 0 \\ -2 \\ 0 \\ -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 0 \\ 10 \end{bmatrix}$, the (AB)^T = $[-8 & 16]$.
Reason (R): If $A = \begin{bmatrix} 2 & -2 \\ 0 \\ -2 \\ 0 \\ -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 0 \\ 10 \end{bmatrix}$, the (AB)^T = $[-8 & 16]$.
Reason (R): AB = $[-8 & 21]$.
a) Both A and R are true and R is the correct b) Both A and R are true but R is not the explanation of A.
c) A is true but R is false.
35. Assertion (A): If $\begin{bmatrix} xy & 4 \\ z+5 & x+y \end{bmatrix} = \begin{bmatrix} 4 & w \\ 0 & 4 \end{bmatrix}$, then $x = 2, y = 2, z = 5$ and $w = 4$.
Reason (R): Two matrices are equal.

	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
36.	Assertion (A): If A = $\begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 2 \end{bmatrix}$ and B = $\begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, then AB and BA both are defined.	[1]
	Reason (R): For the two matrices A and B, the product number of rows in B.	ct AB is defined, if number of columns in A is equal to the	
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
37.	If A is a square matrix of order 3 such that $ adj A = 36$		[1]
	a) ±6	b) ±5	
20	c) -6	d) 6	641
38.	Let A be the area of a triangle having vertices (x_1, y_1)	, (x_2, y_2) and (x_3, y_3) . Which of the following is correct?	[1]
	a) $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2 = A^2$ c) $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \pm \frac{A}{2}$	b) $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \pm A$ d) $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \pm 2A$	
39.		ky + 3z = 0, 3x + ky - 2z = 0, 2x + 3y - 4z = 0, have a	[1]
	non-trival solution is		
	a) $\frac{33}{2}$ c) 33 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \end{vmatrix}$	b) $\frac{2}{33}$ d) 2	[1]
40.	If $\Delta = \begin{vmatrix} a_{21} & a_{22} & a_{23} \end{vmatrix}$ and A _{ij} is Cofactors of a _{ij} , t	hen value of Δ is given by	
	$\begin{vmatrix} a_{31} & a_{32} & a_{33} \end{vmatrix}$ a) $a_{11} A_{31} + a_{12} A_{32} + a_{13} A_{33}$	b) $a_{21} A_{11} + a_{22} A_{12} + a_{23} A_{13}$	
	c) a ₁₁ A ₁₁ + a ₂₁ A ₂₁ + a ₃₁ A ₃₁	d) a ₁₁ A ₁₁ + a ₁₂ A ₂₁ + a ₁₃ A ₃₁	
41.	If A is a non-singular square matrix of order 3 such th	at $A^2 = 3A$, then value of $ A $ is	[1]
	a) 3	b) 9	
	c) -3	d) 27	
42.	If A is a non singular matrix and A' denotes the transp	ose of A, then	[1]
	a) $ AA' \neq A^2 $	b) $ A - A' \neq 0$	
	c) $ A + A' \neq 0$	d) $ A \neq A' $	
43.	If a matrix A is such that $3A^3 + 2A^2 + 5A + I = 0$, the	n A ⁻¹ is equal to	[1]
	a) 3A ² - 2A - 5	b) none of these	

4/8

	c) $3A^2 + 2A + 5$	d) - $(3A^2 + 2A + 5)$	
44.	If $A^5 = O$ such that $A^n \neq I$ for $1 \le n \le 4$, then (I - A) ⁻¹ equals		[1]
	a) _A ³	b) A ⁴	
	c) None of these	d) I + A	
45.	If A is a matrix of order 3 and $ A = 8$, then $ adj A =$		[1]
	a) 2	b) 1	
	c) ₂ 6	d) 2 ³	
46.	A square matrix A is invertible, if and only if		[1]
	a) A is singular matrix i.e. $ A eq 0$	b) A is singular matrix i.e. $ A = 0$	
	c) A is non-singular matrix i.e. $ A \neq 0$	d) A is non-singular matrix i.e. $ A = 0$	
47.	Show that the given system of linear equations is incon	isistent:	[2]
	2x + 5y = 7		
	6x + 15y = 13		
48.	Prove that the determinant $\begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \end{vmatrix}$ is	independent of θ .	[2]
	$\cos \theta$ 1 x		
49.	For what value of x the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$	is singular?	[2]
	$\begin{bmatrix} x & 2 & -3 \end{bmatrix}$		
50.	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$_{3}=0$	[2]
51.	For what value of x is the matrix $\begin{bmatrix} 6-x & 4 \\ 3-x & 1 \end{bmatrix}$ singula		[2]
52.	If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ verify that $A^2 - 4A + I = O$, where $I = 0$	$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. \text{ Hence, find } A^{-1}$	[2]
53.	Solve the system of equations $x + 2y = 3$ and $4x + 8y = 3$	= 12 by using determinants.	[2]
54.	If A is a square matrix of order 3 such that $ A = 3$, the		[2]
55.	Show that the system of linear equations has infinite number of solutions and solve		[3]
	x + 2y = 5 3x + 6y = 15	×	
56.	Solve the system of linear equations by Cramer's rule:	ý.	[3]
	2x - y = -2		
	3x + 4y = 3		
57.	Write the minors and cofactors of each element of the f		[3]
	determinant: A = $\begin{bmatrix} a & h & g \\ h & b & f \end{bmatrix}$	solve the system of equations $x + 3z = -9$, $-x + 2y - 2z =$	
	$\begin{bmatrix} n & o & j \\ g & f & c \end{bmatrix}$		
58.	Use the product $\begin{vmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \end{vmatrix} \begin{vmatrix} -2 & 0 & 1 \\ 0 & 2 & -3 \end{vmatrix}$ to	solve the system of equations $x + 3z = -9 - x + 2y - 2z =$	[3]
50.	$\begin{bmatrix} 0 & 2 & 0 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} 0 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix} $	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
_	4 , $2x - 3y + 4z = -3$.		
59.	Show that the points $(a + 5, a - 4)$, $(a - 2, a + 3)$ and $(a, a - 2)$	a) do not lie on a straight line for any value of a.	[3]

- 60. The cost of 4 kg potato, 3 kg wheat and 2 kg rice is ₹ 60. The cost of 1 kg potato, 2 kg wheat and 3 kg rice is ₹ [3] 45. The cost of 6 kg potato, 2 kg wheat and 3 kg rice is ₹ 70. Find the cost of each item per kg by matrix method.
- 61. Two schools P and Q want to award their selected students on the values of Discipline, Politeness and [3] Punctuality. The school P wants to award ₹ x each, ₹ y each and ₹ z each for the three respectively values to its 3, 2 and 1 students with total award money of ₹ 1,000. School Q wants to spend ₹ 1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹ 600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
- 62. Using matrices, solve the following system of equations

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$$
$$\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$$
$$\frac{6}{x} + \frac{9}{y} + \frac{-20}{z} = 2$$

63. Find the matrix A satisfying the matrix equation

$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

64. Using matrices, solve the following system of equations:

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \\ \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \\ \frac{6}{x} + \frac{9}{y} + \frac{-20}{z} = 2$$

Γ 1

x[5] 65. Show that x = 2 is a root of the equation $\mathbf{2}$ 3x= 0 and solve it completely. x-3 2x

-6

66. If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$$
, then find the value of A⁻

0 7

Using A⁻¹, solve the system of linear equations:

-2

$$x - 2y = 10,$$

$$-2v + z = 7$$

67. Find adjoint of the matrix
$$\begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix}$$

Assertion (A): The points A(a, b + c), B(b, c + a) and C(c, a + b) are collinear. 68. Reason (R): Area of a triangle with three collinear points is zero.

2

5

1

- a) Both A and R are true and R is the correct b) Both A and R are true but R is not the explanation of A. correct explanation of A.
- c) A is true but R is false.

69. Assertion (A): For A =
$$\begin{bmatrix} 4 & 8 \\ 0 & 9 \end{bmatrix}$$
, A⁻¹ is $\begin{bmatrix} 9 & -8 \\ 0 & 4 \end{bmatrix}$
Reason (R): For A = $\begin{bmatrix} 4 & 8 \\ 0 & 9 \end{bmatrix}$, A⁻¹ is $\frac{1}{36} \begin{bmatrix} 9 & -8 \\ 0 & 4 \end{bmatrix}$.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

d) A is false but R is true.

d) A is false but R is true.

ANIL AHUJA PGT MATHS www.ramanujanmathsclasses.com

[3]

[5]

[5]

[5]

[5]

[1]

[1]

70.	Assertion (A): If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then x = ±6. Reason (R): If A is a skew-symmetric matrix of odd order, then A = 0.	[1]
	a) Both A and R are true and R is the correctb) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false. d) A is false but R is true.	
71.	Assertion (A): If A is a 3×3 non-singular matrix, then $ A^{-1} adj A = A $. Reason (R): If A and B both are invertible matrices such that B is inverse of A, then AB = BA = I.	[1]
	a) Both A and R are true and R is the correct b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false. d) A is false but R is true.	
72.	Assertion (A): If A = $\begin{vmatrix} 5 - x & x + 1 \\ 2 & 4 \end{vmatrix}$, then the matrix A is singular if x = 3.	[1]
	Reason (R): A square matrix is a singular matrix if its determinant is zero.	
	a) Both A and R are true and R is the correct explanation of A.b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false. d) A is false but R is true.	
73.	Assertion (A): Determinant is a number associated with a square matrix.	[1]
	Reason (R): Determinant is a square matrix.	
	a) Both A and R are true and R is the correct b) Both A and R are true but R is not the	
	explanation of A. correct explanation of A.	
	c) A is true but R is false. d) A is false but R is true.	
74.	Assertion (A): If $A = \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$, then $A^{-1} = \begin{bmatrix} 3 & -2 \\ 4 & 3 \end{bmatrix}$	[1]
	Reason (R): A = $\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$, then A ⁻¹ = $\begin{bmatrix} \frac{2}{13} & -\frac{5}{13} \\ \frac{3}{13} & -\frac{1}{13} \end{bmatrix}$	
	a) Both A and R are true and R is the correct b) Both A and R are true but R is not the	
	explanation of A. correct explanation of A.	
	c) A is true but R is false. d) A is false but R is true.	
75.	Assertion (A): If Δ is the value of the determinant $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, then the value of the determinant	[1]
	$\begin{vmatrix} pa_1 & b_1 & qc_1 \\ pa_2 & b_2 & qc_2 \\ pa_3 & b_3 & qc_3 \end{vmatrix} \text{ is } \Delta pq.$	
	Reason (R): If entries of a row or column in a square matrix A are multiplied by a number $k \in R$, then the determinant of the resultant matrix is $ k A $	
	determinant of the resultant matrix is k A .	
	a) Both A and R are true and R is the correctb) Both A and R are true but R is not the correct explanation of A.	

c) A is true but R is false.

d) A is false but R is true.

